|
Frame relay is a standardized wide area network technology that specifies the physical and logical link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces. Network providers commonly implement frame relay for voice (VoFR) and data as an encapsulation technique, used between local area networks (LANs) over a wide area network (WAN). Each end-user gets a private line (or leased line) to a frame relay node. The frame relay network handles the transmission over a frequently changing path transparent to all end-user extensively used WAN protocols. It is less expensive than leased lines and that is one reason for its popularity. The extreme simplicity of configuring user equipment in a frame relay network offers another reason for frame relay's popularity. With the advent of Ethernet over fiber optics, MPLS, VPN and dedicated broadband services such as cable modem and DSL, the end may loom for the frame relay protocol and encapsulation. However many rural areas remain lacking DSL and cable modem services. In such cases, the least expensive type of non-dial-up connection remains a 64-kbit/s frame relay line. Thus a retail chain, for instance, may use frame relay for connecting rural stores into their corporate WAN. == Technical description == The designers of frame relay aimed to provide a telecommunication service for cost-efficient data transmission for intermittent traffic between local area networks (LANs) and between end-points in a wide area network (WAN). Frame relay puts data in variable-size units called "frames" and leaves any necessary error-correction (such as retransmission of data) up to the end-points. This speeds up overall data transmission. For most services, the network provides a permanent virtual circuit (PVC), which means that the customer sees a continuous, dedicated connection without having to pay for a full-time leased line, while the service-provider figures out the route each frame travels to its destination and can charge based on usage. An enterprise can select a level of service quality — prioritizing some frames and making others less important. Frame relay can run on fractional T-1 or full T-carrier system carriers (outside the Americas, E1 or full E-carrier). Frame relay complements and provides a mid-range service between basic rate ISDN, which offers bandwidth at 128 kbit/s, and Asynchronous Transfer Mode (ATM), which operates in somewhat similar fashion to frame relay but at speeds from 155.520 Mbit/s to 622.080 Mbit/s.〔(【引用サイトリンク】url=http://searchenterprisewan.techtarget.com/definition/frame-relay )〕 Frame relay has its technical base in the older X.25 packet-switching technology, designed for transmitting data on analog voice lines. Unlike X.25, whose designers expected analog signals with a relatively high chance of transmission errors, frame relay is a fast packet switching technology operating over links with a low chance of transmission errors (usually practically lossless like PDH), which means that the protocol does not attempt to correct errors. When a frame relay network detects an error in a frame, it simply drops that frame. The end points have the responsibility for detecting and retransmitting dropped frames. (However, digital networks offer an incidence of error extraordinarily small relative to that of analog networks.) Frame relay often serves to connect local area networks (LANs) with major backbones, as well as on public wide-area networks (WANs) and also in private network environments with leased lines over T-1 lines. It requires a dedicated connection during the transmission period. Frame relay does not provide an ideal path for voice or video transmission, both of which require a steady flow of transmissions. However, under certain circumstances, voice and video transmission do use frame relay. Frame relay originated as an extension of integrated services digital network (ISDN). Its designers aimed to enable a packet-switched network to transport over circuit-switched technology. The technology has become a stand-alone and cost-effective means of creating a WAN. Frame relay switches create virtual circuits to connect remote LANs to a WAN. The frame relay network exists between a LAN border device, usually a router, and the carrier switch. The technology used by the carrier to transport data between the switches is variable and may differ among carriers (i.e., to function, a practical frame relay implementation need not rely solely on its own transportation mechanism). The sophistication of the technology requires a thorough understanding of the terms used to describe how frame relay works. Without a firm understanding of frame relay, it is difficult to troubleshoot its performance. Frame-relay frame structure essentially mirrors almost exactly that defined for LAP-D. Traffic analysis can distinguish frame relay format from LAP-D by its lack of a control field. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Frame Relay」の詳細全文を読む スポンサード リンク
|